65 research outputs found

    Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.

    Get PDF
    <div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div

    Confounding and exposure measurement error in air pollution epidemiology

    Get PDF
    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains

    Examining the representativeness of home outdoor PM2.5, EC, and OC estimates for daily personal exposures in southern California

    Get PDF
    Recent studies have linked acute respiratory and cardiovascular outcomes to measurements or estimates of traffic-related air pollutants at homes or schools. However, few studies have evaluated these outdoor measurements and estimates against personal exposure measurements. We compared measured and modeled home outdoor concentrations with personal measurements of traffic-related air pollutants in the Los Angeles air basin (Whittier and Riverside). Personal exposure of 63 children with asthma and 15 homes were assessed for particulate matter with an aerodynamic diameter less than 2.5 ?m (PM(2.5)), elemental carbon (EC), and organic carbon (OC) during sixteen 10-day monitoring runs. Regression models to predict daily home outdoor PM(2.5), EC, and OC were constructed using home outdoor measurements, geographical and meteorological parameters, as well as CALINE4 estimates at outdoor home sites, which represent the concentrations from local traffic sources. These home outdoor models showed the variance explained (R(2)) was 0.97 and 0.94 for PM(2.5), 0.91 and 0.83 for OC, and 0.76 and 0.87 for EC in Riverside and Whittier, respectively. The PM(2.5) outdoor estimates correlated well with the personal measurements (Riverside R(2) = 0.65 and Whittier R(2) = 0.69). However, excluding potentially inaccurate samples from Riverside, the correlation between personal exposure to carbonaceous species and home outdoor estimates in Whittier was moderate for EC (R(2) = 0.37) and poor for OC (R(2) = 0.08). The CALINE4 estimates alone were not correlated with personal measurements of EC or other pollutants. While home outdoor estimates provide good approximations for daily personal PM(2.5) exposure, they may not be adequate for estimating daily personal exposure to EC and OC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11869-010-0099-y) contains supplementary material, which is available to authorized users
    corecore